Output Parsers
Learn about output parsers and how to implement it effectively.
2 min read
🆕Recently updated
Last updated: 12/9/2025
Output Parsers
Output Parsers in InnoSynth-Forjinn enable AI workflows to convert raw LLM or agent output into structured, validated, and machine-usable formats. They ensure downstream nodes, actions, or integrations can reliably consume model responses.
Why Use Output Parsers?
- Structured Data: Convert model outputs to JSON, objects, or domain-specific types.
- Robustness: Prevents breaking changes if LLM output format changes; you enforce what’s expected.
- Validation: Reject or repair malformed model outputs.
- Integration: Feed output to APIs, databases, or other automation confidently.
Usage in Workflows
- Add Output Parser node downstream from LLM, agent, or any Tool node
- Choose expected structure/schema (e.g., JSON, CSV, object field mapping)
- Connect to downstream nodes for API requests, storage, or further processing
Types of Parsers
1. JSON Parser
- Tries to extract/validate a JSON object from text output or responses
- Able to auto-fix minor format issues (common with LLMs)
2. CSV/TSV Parser
- For tabular outputs, parses LLM/txt output to arrays/records
3. Custom Schema/Object
- Define expected keys/types; parser validates output and provides error if format is invalid
4. Domain Parsers
- Special plugins for e.g., SQL, YAML, Markdown tables, XML
Configuration
- Input: Connect from the node producing unstructured output (LLM, Tool)
- Schema (if supported): Optional; define keys, types, required/optional status
- Error Handling: Set fallback value, retry, or alternative route when parsing fails
Example Use Case
- LLM Node generates Q&A responses expected as
{ "question": "...", "answer": "..." } - Output Parser Node: set schema to enforce keys/types
- If valid: route to storage/API; if invalid: log error or prompt user to try again
Troubleshooting
- LLM returns invalid JSON: Add system prompt instructing proper format; use Output Parser "auto-fix" when available
- Fields missing: Set schema keys as optional or configure fallback path
Best Practices
- Use Output Parsers when integrating with any system that requires structured data (webhook, CRM, DB)
- Combine with Moderation for safe, sanitized, AND structured output
- For complex tasks, break up output into simpler key/value pairs
Output Parsers are your safeguard against LLM/AI unpredictability—ensure every integration always gets clean, actionable data.