Forjinn Docs

Development Platform

Documentation v2.0
Made with
by Forjinn

Output Parsers

Learn about output parsers and how to implement it effectively.

2 min read
🆕Recently updated
Last updated: 12/9/2025

Output Parsers

Output Parsers in InnoSynth-Forjinn enable AI workflows to convert raw LLM or agent output into structured, validated, and machine-usable formats. They ensure downstream nodes, actions, or integrations can reliably consume model responses.


Why Use Output Parsers?

  • Structured Data: Convert model outputs to JSON, objects, or domain-specific types.
  • Robustness: Prevents breaking changes if LLM output format changes; you enforce what’s expected.
  • Validation: Reject or repair malformed model outputs.
  • Integration: Feed output to APIs, databases, or other automation confidently.

Usage in Workflows

  • Add Output Parser node downstream from LLM, agent, or any Tool node
  • Choose expected structure/schema (e.g., JSON, CSV, object field mapping)
  • Connect to downstream nodes for API requests, storage, or further processing

Types of Parsers

1. JSON Parser

  • Tries to extract/validate a JSON object from text output or responses
  • Able to auto-fix minor format issues (common with LLMs)

2. CSV/TSV Parser

  • For tabular outputs, parses LLM/txt output to arrays/records

3. Custom Schema/Object

  • Define expected keys/types; parser validates output and provides error if format is invalid

4. Domain Parsers

  • Special plugins for e.g., SQL, YAML, Markdown tables, XML

Configuration

  • Input: Connect from the node producing unstructured output (LLM, Tool)
  • Schema (if supported): Optional; define keys, types, required/optional status
  • Error Handling: Set fallback value, retry, or alternative route when parsing fails

Example Use Case

  1. LLM Node generates Q&A responses expected as { "question": "...", "answer": "..." }
  2. Output Parser Node: set schema to enforce keys/types
  3. If valid: route to storage/API; if invalid: log error or prompt user to try again

Troubleshooting

  • LLM returns invalid JSON: Add system prompt instructing proper format; use Output Parser "auto-fix" when available
  • Fields missing: Set schema keys as optional or configure fallback path

Best Practices

  • Use Output Parsers when integrating with any system that requires structured data (webhook, CRM, DB)
  • Combine with Moderation for safe, sanitized, AND structured output
  • For complex tasks, break up output into simpler key/value pairs

Output Parsers are your safeguard against LLM/AI unpredictability—ensure every integration always gets clean, actionable data.